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Abstract Non-linear reaction-diffusion processes with cross-diffusion in two-dimensional,
anisotropic media are analyzed by means of an implicit, iterative, time-linearized approximate
factorization technique as functions of the anisotropy of the heat and species diffusivity tensors, the
Soret and Dufour cross-diffusion effects, and five types of boundary conditions. It is shown that
anisotropy and cross-diffusion deform the reaction front and affect the front velocity, and the
magnitude of these effects increases as the magnitude of the off-diagonal components of the heat
and species diffusivity tensors is increased. It is also shown that the five types of boundary
conditions employed in this study produce similar results except when there is either strong
anisotropy in the species or heat diffusivity tensors and there are no Soret and Dufour effects, or
the species and heat diffusivity tensors are isotropic, but the anisotropy of the Soret and Dufour
effects is important. If the species and heat diffusivity tensors are isotropic, the effects of either the
Soret or the Dufour cross-diffusion effects are small for the cases considered in this study. The time
required to achieve steady state depends on the anisotropy of the heat and diffusivity tensors, the
cross-diffusion effects, and the boundary conditions.

1. Introduction
Many materials are non-homogeneous and anisotropic, and the dependence of
their thermal conductivity on the space coordinates and direction must be
considered. Examples of anisotropic materials include wood, sedimentary
rocks, laminated metal sheets, fibre reinforced structures, porous media and
composites, to name a few.

The appearance of mixed second-order derivatives and the boundary
conditions have placed great challenges in analytical studies of even linear
anisotropic heat conduction problems (Hsieh and Ma, 2002), and researchers
have employed a variety of approximate numerical techniques including Monte
Carlo methods for steady state situations (Kowsary and Arabi, 1999),
lumped-differential formulations for the study of steady anisotropic heat
transfer in composite materials (Traiano et al., 1997), finite element methods for
the curing of thermosetting matrix composites (Yi et al., 1997), and boundary
element formulations for steady anisotropic heat conduction problems in
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two-dimensional domains (Mera et al., 2001). All of these studies have
considered linear problems without source terms, except that of Yi et al. (1997)
that accounted for internal heat generation by exothermic chemical reactions in
their simulations of the curing of polymer matrix composites; these authors
assumed that the degree of curing is governed by the first-order ordinary
differential equations in the time variable which depend non-linearly on the
temperature which, in turn, is governed by a partial differential equation with
an isotropic thermal conductivity tensor.

In this paper, we consider non-linear reaction-diffusion phenomena in
two-dimensional anisotropic media such as those occurring in combustion of
solid materials, reactive flows in porous media, catalysts, curing of composite
materials, etc., subject to different boundary conditions, by accounting for the
anisotropic character of both the species and heat diffusion. In addition, the
formulation presented in the paper accounts for anisotropic cross-diffusion
effects, i.e. the effects of heat conduction on the diffusion of chemical species
and the effects of species diffusion on heat conduction, which have been
ignored in earlier studies of flows in porous media, curing of materials and
laser-induced thermal damage of laminated composites. These effects are called
the (thermodiffusion) Soret and Dufour ones and may play an important role in
transport phenomena in reactive and/or diffusive media (Skarda et al., 1998;
Williams, 1985) and porous media with thermal and solutal convection
(Benano-Melly et al., 2001) to name, but a few. The formulation presented in
this paper is given in terms of dimensionless variables and can also be applied
to study a variety of two-dimensional reactive-diffusive systems with
anisotropic heat conductivity and diffusivity tensors such as those
mentioned above.

As stated earlier, even two-dimensional anisotropic heat conduction
problems are not easily amenable to analytical techniques due to the
appearance of mixed second-order derivative terms. In this paper, implicit,
iterative, time-linearization methods based on the discretization of the time
variable and the linearization of the resulting elliptic partial differential
equations with respect to the previous time level are employed. These
(two-dimensional) linear elliptic equations are then factorized in terms of
one-dimensional operators in each spatial direction taking into consideration
the mixed second-order derivative terms and neglecting the second-order
factorization errors.

Approximate factorization methods for non-linear problems including the
Euler and Navier-Stokes equations were developed by Beam and Warming
(1978) and Briley and McDonald (1980). The approximate factorization of the
two-dimensional compressible Navier-Stokes equations cannot be performed
exactly due to the appearance of mixed second-order derivatives in the linear
momentum equations; these terms are analogous to those that appear in the
anisotropic reactive-diffusive media considered in this paper and have, in the
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past, been evaluated explicitly either at the previous time level with the
consequent loss of accuracy of the resulting implicit time-linearized method or
using two previous time levels which maintain the second-order accuracy of
second-order implicit time-linearized techniques at the expense of introducing
additional time levels (Beam and Warming, 1978; Briley and McDonald, 2001;
Steinthorsson et al., 1991).

In this paper, an approximate factorization method is employed and the
mixed second-order derivative terms and the implementation of the boundary
conditions are treated iteratively by means of the iterative predictor-corrector
strategy proposed by Ramos (1999) in his study of two-dimensional
reaction-diffusion equations in the isotropic media. Iterative approximate
factorization techniques have been recently reviewed by Briley and McDonald
(2001) and MacCormack (2001) who point out that non-iterative approximate
factorization techniques should be used whenever one is interested in the (final)
steady-state solution, whereas iterative ones should be employed whenever one
is interested in accurate transient solutions.

The paper has been organized as follows. In Section 2, the non-dimensional
time-dependent equations governing the reactive-diffusive phenomena in
two-dimensional anisotropic media are presented. Section 3 contains a study of
the convergence of the iterative predictor-corrector strategy and an analysis of
the linear stability of the numerical method employed in this paper. The
iterative approximate factorization technique has been employed to deal with
the mixed second-order derivative terms and the boundary conditions, and
originates from the time discretization and both the linearization with respect
to the previous time level and the factorization of the resulting elliptic
equations. Some sample results illustrating the transient phenomena in
the two-dimensional, anisotropic, reactive-diffusive media are presented in
Section 4, as functions of the anisotropy of the heat conductivity and species
diffusion tensors as well as the Soret and Dufour or cross-diffusion effects, and
five different types of boundary conditions. Section 5 provides a summary of
the main conclusions.

2. Formulation
Consider the following system of two, non-linearly coupled, reaction-diffusion
(partial differential) equations

›u

›t
¼ 7 · ðk7uÞ þ 7 · ðd7vÞ þ Suðu; vÞ; ð1Þ

›v

›t
¼ 7 · ðK7uÞ þ 7 · ðD7vÞ þ Svðu; vÞ; ð2Þ
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where t is the time variable, u and v are the dependent variables, k, d, K and D
are the diffusivity tensors, Su and Sv are the non-linear source terms, and 7 is
the gradient operator in the two-dimensional Cartesian coordinates x and y.

The diffusivity tensors considered in this paper may not be diagonal;
therefore, equations (1) and (2) contain mixed second-order derivative terms.
Equations (1) and (2) can also be written as

›U

›t
¼ a

›2U

›x2
þ b

›2U

›x ›y
þ g

›2U

›y2
þ SðUÞ; ð3Þ

where U ¼ ðu; vÞT, S ¼ ðSu; SvÞ
T, the superscript T denotes transpose, and a,

b and g are the second-order rank tensors. The components of a are a11 ¼ k11,
a12 ¼ d11, a21 ¼ K11 and a22 ¼ D11, those of b are b11 ¼ k12 þ k21,
b12 ¼ d12 þ d21, b21 ¼ K12 þ K21, and b22 ¼ D12 þ D21, and those of g are
g11 ¼ k22, g12 ¼ d22, g21 ¼ K22, and g22 ¼ D22. Hereon, we shall refer to u and
v as the species mass fraction and (non-dimensional) temperature, respectively;
k and D as the species and heat diffusivity tensors, respectively; and, the
second term on the right-hand side of equation (1) and the first term on the
right-hand side of equation (2) as either the effects of heat and species diffusion
on species and heat diffusion, respectively, or the Soret and Dufour
cross-diffusion effects, respectively, by analogy with the terminology
employed in transport phenomena and, especially, in combustion (Williams,
1985).

Equations (1) and (2) govern a variety of physical problems such as, for
example, non-linear reaction-diffusion processes in the anisotropic media, the
curing of thermosetting matrix composites, anisotropic heat and mass transfer,
combustion of solid materials, etc.

In this paper, we consider the solution of equations (1) and (2) in D ¼
½2Lx=2 , x , Lx=2;2Ly=2 , y , Ly=2� and t . 0, where Lx ¼ Ly ¼ 20,
initial conditions Uð0; x; yÞ ¼ ð1; viÞ

T where vi ¼ expð2ðx2 þ y2ÞÞ which
correspond to a local increase of the temperature, for
S ¼ ð2u2v; u2v 2 0:5vÞT, different diffusivity tensors, and the following
types of (Neumann) boundary conditions.

Boundary conditions of type 1:

›u

›n
¼

›v

›n
¼ 0; ð4Þ

on all the boundaries, where n denotes the external normal to the boundary.
Boundary conditions of type 2:

›u

›x
¼

›v

›x
¼ 0; at x ¼ ^Lx; ð5Þ

HFF
13,8

1000



k21
›u

›x
þ k22

›u

›y
¼ 0; at y ¼ ^Ly; ð6Þ

D21
›v

›x
þ D22

›v

›y
¼ 0; at y ¼ ^Ly: ð7Þ

Boundary conditions of type 3:

›u

›x
¼

›v

›x
¼ 0; at x ¼ ^Lx; ð8Þ

k21
›u

›x
þ k22

›u

›y
þ d21

›v

›x
þ d22

›v

›y
¼ 0; at y ¼ ^Ly; ð9Þ

K21
›u

›x
þ K22

›u

›y
þ D21

›v

›x
þ D22

›v

›y
¼ 0; at y ¼ ^Ly: ð10Þ

Boundary conditions of type 4:

k11
›u

›x
þ k12

›u

›y
þ d12

›v

›y
¼ 0; at x ¼ ^Lx; ð11Þ

K12
›u

›y
þ D11

›v

›x
þ D12

›v

›y
¼ 0; at x ¼ ^Lx: ð12Þ

k21
›u

›x
þ k22

›u

›y
þ d21

›v

›x
þ d22

›v

›y
¼ 0; at y ¼ ^Ly; ð13Þ

K21
›u

›x
þ K22

›u

›y
þ D21

›v

›x
þ D22

›v

›y
¼ 0; at y ¼ ^Ly: ð14Þ

Boundary conditions of type 5:

k11
›u

›x
þ k12

›u

›y
þ d11

›v

›x
þ d12

›v

›y
¼ 0; at x ¼ ^Lx; ð15Þ

K11
›u

›x
þ K12

›u

›y
þ D11

›v

›x
þ D12

›v

›y
¼ 0; at x ¼ ^Lx: ð16Þ

k21
›u

›x
þ k22

›u

›y
þ d21

›v

›x
þ d22

›v

›y
¼ 0; at y ¼ ^Ly; ð17Þ
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K21
›u

›x
þ K22

›u

›y
þ D21

›v

›x
þ D22

›v

›y
¼ 0; at y ¼ ^Ly: ð18Þ

Boundary conditions of type 1 correspond to those employed in the isotropic
media, namely, diagonal k and D when there are no cross-diffusion terms, i.e.
when d ¼ K ¼ 0. Equations (6) and (7) set the normal gradient of u and v to the
boundaries equal to zero and ignore cross-diffusion effects, whereas equations
(9), (10), (13), (14), (17) and (18) set the total fluxes of heat and species mass
fractions normal to the boundaries equal to zero. Finally, equations (11) and (12)
set part of the total fluxes of heat and species mass fractions normal to the
boundaries equal to zero. In the theory of transport phenomena, the most
accurate and realistic boundary conditions are those of equations (17) and (18),
whilst the rest are approximations. As stated in the Introduction, one of the
objectives of this paper is to determine the effects of the boundary conditions
on two-dimensional, anisotropic, reactive-diffusive systems.

3. Numerical method
Upon discretization of the time derivative in equation (1) by means of a
u-method, linearization of the resulting partial differential equations with
respect to the previous time step and factorization of the resulting equation, one
can easily obtain

I2 uDta
›2

›x2
2 uDtdJ

� �
I2 uDtg

›2

›y2
2 uDt1J

� �
DU

¼ RHSþ uDtb
›2DU

›x ›y
þAFE; ð19Þ

where I is the 2 £ 2 identity matrix, DU ¼ Unþ1 2 Un, dþ 1 ¼ 1, J ¼ ›S=›U
denotes the Jacobian matrix, Dt is the time step, n denotes the n-th time level,
i.e. t n ¼ nDt and n ¼ 0; 1; 2; . . .; u is the implicitness parameter, i.e. 0#u # 1,

RHS ¼ Dt a
›2Un

›x2
þ b

›2Un

›x ›y
þ g

›2Un

›y2
þ SðUnÞ

� �
; ð20Þ

and the approximate factorization errors can be expressed as

AFE ¼ Dt 2u2 a
›2

›x2
g
›2DU

›y2

� �
þ 1a

›2

›x2
ðJDUÞ þ dJg

›2DU

›y2
þ d1J2DU

� �
:

ð21Þ

The second-order spatial derivatives that appear in equations (19) and (20) have
been discretized by means of the second-order accurate formulae as
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›2U

›x2

� �
i; j

¼
1

Dx2
d2xUi; j þ OðDx2Þ; ð22Þ

›2U

›y2

� �
i; j

¼
1

Dy2
d2yUi; j þ OðDx2Þ; ð23Þ

›2U

›x ›y

� �
i; j

¼
1

4DxDy
d2xyUi; j þ OðDx2;Dy2Þ; ð24Þ

where d2xUi; j ¼ Uiþ1; j 2 2Ui; j þ Ui21; j, d
2
yUi; j ¼ Ui; jþ1 2 2Ui; j þ Ui; j21 and

d2xyUi; j ¼ Uiþ1; jþ1 2 Uiþ1; j21 2 Ui21; jþ1 þ Ui21; j21, and the subscripts i and j
denote the coordinates xi and yj, respectively, of the grid points.

In this paper, we consider d ¼ 1 ¼ 1=2 and a trapezoidal rule, i.e. u ¼ 1=2,
which is second-order accurate in time, and neglect the second-order
approximate factorization errors in equation (19). However, the presence of
the mixed second-order derivative terms in equation (19) does not allow for an
exact factorization. As a consequence, these mixed second-order derivative
terms have frequently been treated explicitly, especially in Computational
Fluid Dynamics (CFD), i.e. the mixed second-order derivative terms in the
right-hand side of equation (19) have frequently been set to zero, or have been
approximated by explicit second-order accurate formulae involving two
previous time levels (Beam and Warming, 1978; Briley and McDonald, 2001;
Steinthorsson et al., 1991). In this paper, we account for the mixed second-order
derivative terms in equation (19) by means of a generalization of the iterative
predictor-corrector strategy developed by the author for isotropic
reactive-diffusive media (Ramos, 1999) as follows. In the predictor (P) step,
the following one-dimensional operators are solved

LxðDU
*PÞ ; I2

uDt

Dx2
ad2x 2 uDtdJ

� �
ðDU*PÞ ¼ RHS; ð25Þ

LyðDUÞ ; I2
uDt

Dy2
gd2y 2 uDt1J

� �
ðDUPÞ ¼ DU*P ; ð26Þ

where RHS has been discretized as per equations (22)-(24), and the superscript
P denotes the predictor step. In this step, the mixed second-order derivative
terms that appear in equation (19) are neglected, i.e. the mixed second-order
derivative terms are treated explicitly; as a consequence, equations (25) and (26)
are linear and decoupled, and can be solved sequentially to determine the
predictor solution.
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In the corrector (C ) step, the following linear one-dimensional operators
are solved

LxðDU
*kÞ ¼ RHSþ uDtb

›2DUk21

›x ›y
; k ¼ 1; 2; . . .; ð27Þ

LyðDU
kÞ ¼ DU*k; k ¼ 1; 2; . . .; ð28Þ

where k denotes the k-th iteration within the time step, and the second term
in the right-hand side of equation (27) for k ¼ 1 is that of the predictor
step.

The solutions of the one-dimensional equations (27) and (28) require the use
of boundary conditions. Since the most general boundary conditions considered
in this paper are those of type 5, i.e. equations (15)-(18), we shall only write the
boundary conditions for the one-dimensional operators of equations (27) and
(28) for these boundary conditions. Note that the boundary conditions of types
1-4 can be easily obtained from those of type 5.

From equations (15) and (16), it can be easily deduced that

›U

›x
¼ 2AL

›U

›y
; at x ¼ 2Lx; ð29Þ

›U

›x
¼ 2AR

›U

›y
; at x ¼ þLx; ð30Þ

provided that k11D11 2 d11K11 – 0, whereas, from equations (17) and (18), one
can obtain

›U

›y
¼ 2AB

›U

›x
; at y ¼ 2Ly; ð31Þ

›U

›y
¼ 2AT

›U

›x
; at y ¼ þLy; ð32Þ

provided that k22D22 2 d22K22 – 0, where AL, AR, AB and AT are (constant)
matrices, the components of which can be easily deduced from equations (15)
and (16) and equations (17) and (18), respectively.

Equations (29)-(32) can be written in delta form using the terminology of the
iterative predictor-corrector method described above as

›DU*k

›x
¼ 2AL

›DUk21

›y
; at x ¼ 2Lx; ð33Þ
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›DU*k

›x
¼ 2AR

›DUk21

›y
; at x ¼ þLx; ð34Þ

›DUk

›y
¼ 2AB

›DU*k

›x
; at y ¼ 2Ly; ð35Þ

›DUk

›y
¼ 2AT

›DU*k

›x
; at y ¼ þLy; ð36Þ

for k ¼ 1; 2; . . ., with ›DU*k=›x ¼ 0 at x ¼ ^Lx for k ¼ 1, and can be
discretized by means of second-order accurate formulae using fictitious points.
The discrete values of the dependent variables at the fictitious points can then
be written in terms of the values of the dependent variables at the boundaries
and points next to the boundaries, and can be substituted into the second-order
accurate discretizations of equations (27) and (28) at the boundaries in order to
obtain a system of linear algebraic equations with block-tridiagonal matrices
for all the interior and boundary points. These block-tridiagonal systems of
linear algebraic equations can be solved efficiently by means of LU
decomposition.

3.1 Convergence of the iterative predictor-corrector method
In order to analyze the convergence properties of the iterative
predictor-corrector method, it is convenient to introduce the following variables

rk ¼ DU2 DUk; rk ¼ DU* 2 DU*k; ð37Þ

so that subtraction of equations (27) and (28) from the same equations, but
without the superscripts k and k2 1 yields

Lyðr
kÞ ¼ mk; ð38Þ

Lxðm
kÞ ¼ uDtb

›2rk21

›x ›y
; ð39Þ

which, upon substitution of equations (22)-(24) and rk
i; j ¼ fkexp ðI ðkxxi þ kyyjÞÞ,

result in

Mf k ¼ Nfk21; ð40Þ

where I 2 ¼ 21; kx and ky denote the wavenumbers in the x and y directions,
respectively, and
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M¼ Iþ4
uDt

Dx2
asin2

kxDx

2
2udtdJ

� �
Iþ4

uDt

Dy2
gsin2

kyDy

2
2udt1J

� �
; ð41Þ

N ¼ 2
uDt

DxDy
b sin kxDx sin kyDy: ð42Þ

A necessary condition for the convergence of the iterative predictor-corrector
method is that kM21Nk be less than unity, and this norm depends clearly on the
time step, the diffusion tensors k, K, d and D, the Jacobian matrix J, the
implicitness parameter u, the allocation of the reaction terms to the x and y
operators, and the step sizes in the x and y directions. In addition, the necessary
condition for convergence was established without considering the boundary
conditions.

The following convergence criterion was employed to determine the
convergence of the iterative method presented in this paper

ðDUkþ1 2 DUkÞT · ðDUkþ1 2 DUkÞ

NxNy

� �1
2

# 1028; ð43Þ

where

UT ·U ¼
XNx

i¼1

XNy

j¼1

u2
i; j þ v2i; j

� �
; ð44Þ

Nx and Ny are the number of grid points in the x and y directions, respectively.

3.2 Linear stability of the approximate factorization method
In order to analyze the linear stability of the linear, implicit, approximate
factorization method presented above, it is convenient to introduce the
following variables

Un
i; j ¼ cnexp ðI ðkxxi þ kyyjÞÞ; ð45Þ

which, upon being substituted into equation (19) without the approximate
factorization errors, using equations (22)-(24) and assuming that S is a linear
function of U, i.e. S ¼ JU, where J is a constant matrix, yields

Pck ¼ Qck21; ð46Þ

where
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P ¼ Iþ 4
uDt

Dx2
a sin2

kxDx

2
2 udtdJ

� �
Iþ 4

uDt

Dy2
g sin2

kyDy

2
2 udt1J

� �

þ
Dt

DxDy
b sin kxDx sin kyDy; ð47Þ

Q ¼ Pþ DtJ2 4
Dt

Dx2
a sin2

kxDx

2
2 4

Dt

Dy2
g sin2

kyDy

2

þ
Dt

DxDy
b sin kxDx sin kyDy: ð48Þ

A necessary condition for linear stability is that the norm of the matrix P21Q
be less than unity, and this norm depends clearly on the time step, the diffusion
tensors k, K, d and D, the (constant) Jacobian matrix J, the implicitness
parameter u, the allocation of the reaction terms to the x and y operators, i.e. d
and 1, and the step sizes in the x and y directions. In addition, the necessary
condition for linear or Fourier-von Neumann stability was established without
considering the boundary conditions.

4. Presentation of results
As indicated in Section 2, for a specified reaction mechanism, time-dependent
reaction-diffusion processes in two-dimensional, anisotropic media are
characterized by a large set of parameters, i.e. the four components each of
the heat and species diffusion tensors D and k, respectively, and the four
components each of the cross-diffusion terms K and d, i.e. 16 diffusion
coefficients. In addition, five different boundary conditions have been
employed in this study; therefore, a detailed numerical study of the
time-dependent reaction-diffusion processes in two-dimensional anisotropic
media requires a large set of simulations. Moreover, grid independence studies
require that simulations be performed with different time steps and spatial step
sizes so that the results are independent of the time step and mesh dimensions.
Such a large number of simulations may pose a problem when the results are to
be presented in a concise and understandable manner. In order to avoid such a
presentation problem as much as possible, this section has been organized in
different subsections dealing with grid independent studies, the effects of
anisotropy on the temperature and species, the effects of cross-diffusion
processes and the effects of the boundary conditions on the results. But even
with such an organization, the large number of simulations that have been
performed force us to present only the most relevant results and make
comments on other results that, for brevity, are not reported here.

The effects of the boundary conditions and Soret and Dufour effects on the
reactive-diffusive phenomena in two-dimensional anisotropic media have been

Reactive-
diffusive

phenomena

1007



assessed by means of three-dimensional plots of u and v at selected times, time
histories of u and v at four monitoring locations and the profiles of u and v
along the x and y axes at selected times. The time history profiles allow us to
determine the arrival time of the propagating front at a specified location,
whereas the profiles along the x and y axes allow us to observe the symmetry
characteristics of the u and v profiles at selected times.

A summary of some of the parameters used in the calculations are shown in
Table I. Case 1 of this table corresponds to the isotropic heat and species
diffusion, i.e. isotropic k and D, without the effects of heat diffusion on species
mass diffusion (Soret effect), i.e. d ¼ 0, and the effects of species mass diffusion

Case k11 k12 k21 k22 d11 d12 d21 d22 K11 K12 K21 K22 D11 D12 D21 D22

1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
2 1 0.5 0 1 0 0 0 0 0 0 0 0 1 0 0 1
3 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1
4 1 0 0.5 1 0 0 0 0 0 0 0 0 1 0 0 1
5 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1
6 1 0.5 0.5 1 0 0 0 0 0 0 0 0 1 0 0 1

7 1 0 0 1 0 0 0 0 0 0 0 0 1 0.5 0 1
8 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
9 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0.5 1
10 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1
11 1 0 0 1 0 0 0 0 0 0 0 0 1 0.5 0.5 1

12 1 0 0 1 0.5 0 0 0.5 0 0 0 0 1 0 0 1
13 1 0 0 1 0.5 0.1 0.1 0.5 0 0 0 0 1 0 0 1
14 1 0 0 1 0.5 0.5 0.5 0.5 0 0 0 0 1 0 0 1

15 1 0 0 1 0 0 0 0 0.1 0 0 0 1 0 0 1
16 1 0 0 1 0 0 0 0 0 0 0 0.1 1 0 0 1
17 1 0 0 1 0 0 0 0 0.1 0 0 0.1 1 0 0 1
18 1 0 0 1 0 0 0 0 0 0.1 0 0 1 0 0 1
19 1 0 0 1 0 0 0 0 0 0 0.1 0 1 0 0 1

20 1 0 0 1 0.5 0 0 0.5 0.1 0 0 0.1 1 0 0 1
21 1 0 0 1 0.5 0.5 0.5 0.5 0.1 0 0 0.1 1 0 0 1
22 1 0 0 1 0.5 0 0 0.5 0.1 0.1 0.1 0.1 1 0 0 1
23 1 0 0 1 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 1 0 0 1

24 1 0.4 0.4 1 0.5 0 0 0.5 0.1 0 0 0.1 1 0 0 1
25 1 0.4 0.4 1 0.5 0.1 0.1 0.5 0.1 0 0 0.1 1 0 0 1
26 1 0.4 0.4 1 0.5 0 0 0.5 0.1 0.1 0.1 0.1 1 0 0 1
27 1 0.4 0.4 1 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 1 0 0 1
28 1 0.4 0.4 1 0.5 0 0 0.5 0.1 0 0 0.1 1 0 0 1

29 1 0 0 1 0.5 0 0 0.5 0.1 0 0 0.1 1 0.4 0.4 1
30 1 0 0 1 0.5 0.5 0.5 0.5 0.1 0 0 0.1 1 0.4 0.4 1
31 1 0 0 1 0.5 0 0 0.5 0.1 0.1 0.1 0.1 1 0.4 0.4 1

Table I.
Components of the
diffusivity tensors k, d,
K and D

HFF
13,8

1008



on heat diffusion (Dufour effect), i.e. K ¼ 0. Cases 2-6 correspond to the
anisotropic species diffusion and isotropic heat diffusion without
cross-diffusion effects. In cases 7-11, the species diffusion is isotropic, heat
diffusion is anisotropic and there are no Soret and Dufour processes, whereas,
in cases 12-14, the species and heat diffuse isotropically and there is
thermodiffusion, but there are no Soret effects. In cases 15-19, species and heat
diffuse isotropically, and there are Soret effects, but there is no thermodiffusion.
In cases 20-23, heat and species diffuse isotropically but there are Soret and
Dufour effects, whereas, in cases 24-31, there is cross-diffusion of the species
and heat, the heat diffuses anisotropically in cases 24-28, and the species
diffuse anisotropically in cases 29-31.

It must be pointed out that the tensors k and D considered here are positive
definite, so that, for example, ðk12 þ k21Þ

2 , 4k11k22; therefore, in the absence of
cross-diffusion effects and under steady state conditions, equations (1) and (2)
are elliptic.

4.1 General considerations and grid-independence studies
Before presenting some sample results for anisotropic media, it seems
convenient to review what has been observed in isotropic media with
d ¼ K ¼ 0, and diagonal k and D with identical (diagonal) components equal
to one, i.e. case 1 of Table I, so that the anisotropic results can be compared with
the isotropic ones, and to discuss the grid-independent studies that have been
performed.

In case 1, it has been observed that the initial condition in v results in the
formation of a peak in v (Figure 1) and a valley in u (Figure 2). The peak in v
decreases in amplitude, whereas its width increases as time increases;
eventually, a valley is formed in the center of the domain as shown in the fourth
frame of Figure 1, the depth and width of which increase until the reaction front
approaches the boundaries of the domain. Later on, the values of v at the
boundaries of the domain increase (sixth frame) and exceed those in the interior
of the domain (frames 8 and 9 of Figure 2), before a steady state is reached. It
must be noted that the calculations shown in Figure 1 were performed with a
101 £ 101-point mesh and Dt ¼ 0:04, but only 50 £ 50 points have been drawn
in Figures 1 and 2 for clarity, and that the solution at t ¼ 50 is not the steady
state one.

The valley exhibited by u (Figure 2) also spreads sideways, the value of u at
the boundaries decreases below its initial condition at a faster pace than those
at the corners of the domain (frames 5-8), and, at t ¼ 50, is smaller than those in
the middle of the computational domain (frame 9). The results presented in
Figures 1 and 2 indicate that both v and u are symmetric with respect to the x
and y axes, as one should expect. This symmetry is lost whenever the
diffusivity tensors are anisotropic as shown in Figures 3 and 4 which
correspond to the case 6 of Table I and present snapshots of u and v,
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Figure 1.
v at selected times for
case 1 of Table I and
boundary conditions of
type 1
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Figure 2.
u at selected times for
case 1 of Table I and

boundary conditions of
type 1
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Figure 3.
u at selected times for
case 6 of Table I and
boundary conditions of
type 1
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Figure 4.
v at selected times for
case 6 of Table I and

boundary conditions of
type 1

Reactive-
diffusive

phenomena

1013



respectively, at selected times. For example, the effects of the anisotropy in the
diffusion of species can be observed if Figure 3 is compared with Figure 2. In
particular, Figure 3 shows that the width of the valley in u is larger along the
diagonal that connects the corners located at (220, 220) and (20, 20) than
along the other diagonal in the first to fifth frames of this figure. The sixth and
seventh frames of Figure 3 indicate that the reaction front reaches the corners
located at (220,220) and (20, 20) earlier than those at (220, 20) and (20,220)
where the value of u is nearly the same as the initial condition. Later on, the last
two frames of Figure 3 indicate that the values of u at the corners located at
(220, 220) and (20, 20) decrease.

The results presented in Figure 4 show that the v-front reaches the corners
located at (20, 20) and (220, 220) earlier than those located at (20, 220) and
(220, 20); the value of v at the latter is nearly identical to the initial value of v
before the front reaches these corners. At larger times, the results presented in
the ninth frame of Figure 4 indicate that the maximum values of v occur near
the corners located at (220, 20) and (20, 220) on account of the species and
heat transport processes.

The results presented in Figures 1-4 indicate that the reaction front is
characterized by steep gradients of u and v as it approaches, but is far from the
boundaries. Once this front is near the boundaries, the magnitude of the
gradients there decreases as a consequence of the homogeneous Neumann
boundary conditions employed in this study.

All the cases 1-31 of Table I and other studies not presented here were
performed with meshes consisting of 101 £ 101, 201 £ 201 and 401 £ 401
points, and it was observed that the largest absolute value of the (local)
difference between the results corresponding to 101 £ 101 and 201 £ 201-point
meshes was less than 1026 in u and v for Dt ¼ 0:01, whereas the largest (local)
difference between the results corresponding to 201 £ 201 and 401 £ 401-point
meshes was less than 1027 in u and v for the same step. The time at which the
largest difference was observed, was found to depend on the heat and species
diffusion tensors and the Soret and Dufour effects.

For a 101 £ 101-point mesh, it was found that the local errors decreased
quadratically as the time step was decreased from Dt ¼ 0:04 to 0.001, and that
the largest difference between the results corresponding to Dt ¼ 0:04 to 0.01
was on the order of 1025 for cases 1-11 of Table I. Therefore, Dt ¼ 0:04 was
employed for cases 1-11, whereas Dt was equal to 0.01, 0.005 and 0.0001 for
cases 12-19, 20-23 and 24-31, respectively. Cases 12-31 were found to require
smaller time steps due to cross-diffusion effects which increase the norm of the
matrices that guarantee the convergence of the iterative predictor-corrector
strategy and the linear stability of the approximate factorization method
employed in this paper (cf. Section 3).
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4.2 Effect of the species diffusion anisotropy
As shown in Figures 3 and 4 which correspond to case 6, it has been observed
that the reactive front approaches earlier the corners located at (20, 20) and
(220, 220) than the other two corners, although it is difficult to notice the
differences between the three-dimensional plots of, say, Figures 1 and 2 and the
corresponding figures for case 6 with the naked eyes. For this reason and in
order to assess the effects of anisotropy on the motion of the reacting fronts in
cases 1-31 and, in particular, in Figures 1-4, we have monitored the values of u
and v as functions of time at the locations ðx; yÞ ¼ ð1:60; 1:60Þ, (210.4, 9.60),
(9.60, 210.4) and (9.60, 9.60) in order to determine the arrival time of the
reacting front at these locations.

For cases 1-6, where there are no Soret and Dufour effects, heat diffuses
isotropically and the species diffusivity tensor is anisotropic, the time histories
shown in Figure 5 indicate that, at the location (9.60, 9.60), there are very few
differences in the u profiles for cases 1-4, and cases 3-6 result in a slightly
thicker u profile at t ¼ 50 than case 1; the results of case 4 are indistinguishable
from those of cases 2 and 3 in Figure 5. Similar trends to those of cases 2 and 4
are observed for cases 5 and 6.

Figure 5.
Time histories of u (top)

and v (bottom) at
(x, y) ¼ (9.60, 9.60) for

boundary conditions of
type 1
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The time histories of v shown in Figure 5 indicate that case 1 results in a larger
maximum value of v than cases 2-6.

Another illustration of the effects of species diffusion anisotropy on
two-dimensional reaction-diffusion phenomena is shown in Figure 6 which
exhibits the profiles of u and v along the x and y axes for cases 1-6 at t ¼ 50.
This figure indicates that the effects of the anisotropy of the species diffusivity
tensor on the symmetry of the u and v profiles is small for cases 1-6, although
cases 2, 4-6 results in a larger maximum value of u than cases 1 and 3 and, for
the anisotropic cases 2-6, the values of u and v at the boundaries located at
x ¼ Lx and y ¼ Ly are larger than those at x ¼ 2Lx and y ¼ 2Ly in accordance
with the three-dimensional plots presented in Figures 3 and 4.

In order to understand the results presented in Figures 3-6, it is
convenient to consider the principal directions of the tensor k. We shall
consider, as an example, an orthotropic tensor with k11 ¼ k12 ¼ 1 and
k12 ¼ k21. For such a tensor which includes the isotropic one, it can be easily
shown that its eigenvalues are 1^ k12 and its principal or main directions
are (1, 1)T and ð21; 1ÞT, and the tensor can be diagonalized. This implies
that, along the (1, 1)T-direction the species diffusivity is larger than along the

Figure 6.
u(x,0, 50) and v(x,0, 50)
(left) and u(0, y, 50) and
v(0, y, 50) (right) for
boundary conditions of
type 1
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ð1;21ÞT-direction and, as a consequence, the species diffuse at a faster rate
along the former direction and the rate of diffusion increases as k12 increases.
Since for cases 2-6, heat diffuses isotropically and there are no Soret and
Dufour effects, one should expect a higher diffusion and faster reaction along
the (1, 1)T-direction than along the (1, 21)T-direction as indicated in the u
and v-profiles shown along the x and y axes in Figure 6.

4.3 Effect of the heat diffusion anisotropy
The effect of the anisotropy of the heat diffusion tensor, D, is illustrated in the
time histories shown in Figure 7 which indicate that case 1 predicts a slower
propagating front than cases 7-11, cases 10 and 11 yield nearly the same
results, and the results of case 9 are indistinguishable from those of case 7. The
slowness of the u and v profiles observed in Figure 7 for case 1 indicates that
the anisotropy of the heat diffusion tensor results in a maximum value of v
larger than that for an isotropic heat diffusivity tensor, i.e. case 1.

Figure 8 shows that the effects of the anisotropy of the heat diffusivity
tensor on the symmetry of the u and v profiles along the x and y axes are small.
However, cases 7 and 9-11 result in a larger maximum value of u than cases 1

Figure 7.
Time histories of u (top)

and v (bottom) at
(x, y) ¼ (9.60, 9.60) for

boundary conditions of
type 1
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and 8; therefore, the maximum value of u along the x and y axes increases as the
anisotropy of D is increased. Furthermore, cases 7 and 9-11 yield larger values
of u and v at the boundaries located at x ¼ Lx and y ¼ Ly than at x ¼ 2Lx and
y ¼ 2Ly, and these values are larger than those predicted by cases 1 and 8.

The results shown in Figures 7 and 8 can be readily explained in terms of the
principal directions and eigenvalues of the diffusivity tensor D as indicated in
the previous subsection. Thus, in case 11, the eigenvalues of this tensor are 1.5
and 0.5 and their corresponding eigenvectors are (1, 1)T and (1,21)T; therefore,
one should expect an increased reaction rate and faster propagating front along
(1, 1)T than along (1,21)T, and this corresponds precisely to the results shown
in Figures 7 and 8, although the effects of the anisotropy heat diffusion tensor
are small.

4.4 The Soret effect
The Soret effect in the absence of the Dufour one and with isotropic heat and
species diffusion is illustrated in the time histories of u and v shown in Figure 9.
This figure clearly indicates that, for the parameters listed in cases 12-14 of
Table I and the reaction mechanism considered in this paper, the Soret effect is

Figure 8.
u(x, 0, 50) and v(x, 0, 50)
(left) and u(0, y, 50) and
v(0, y, 50) (right) for
boundary conditions of
type 1
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small and results in slightly faster and thinner propagating fronts than the
isotropic case 1.

The u and v profiles along the x and y axes shown in Figure 10 clearly
indicate that the anisotropy of these profiles is largest for cases 13 and 14
which correspond to a full and symmetric d tensor, the differences in the u and
v profiles between cases 13 and 14 are small. Almost the same asymmetry in

Figure 9.
Time histories of u (left)

and v (right) at
(x, y) ¼ (1.60, 1.60) for

boundary conditions of
type 1

Figure 10.
u(x, 0, 50) and v(x, 0, 50)
(left) and u(0, y, 50) and

v(0, y, 50) (right) for
boundary conditions of

type 1
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the u profiles as for cases 13 and 14 is observed in case 12. For both cases 13
and 14 of Table I, the principal directions of d are (1, 1)T and (1,21)T, whereas
its eigenvalues are 1.1 and 0.9, and 1.5 and 0.5, respectively. Therefore, the
magnitude of the Soret effects is much more important along (1, 1)T than along
(1, 21)T as indicated in the u and v profiles shown in Figure 10 which clearly
indicate that the values of u and v at the boundaries located at x ¼ Lx and
y ¼ Ly are larger than those at x ¼ 2Lx and y ¼ 2Ly.

The results shown in Figures 9 and 10 also indicate that, even though the
time histories at (9.60, 9.60) are very similar for cases 1, 12, 13 and 14, and
therefore, the arrival times of the reaction front at this location are similar, the
profiles of u and v may be quite different. Therefore, one should be extremely
careful when curing thermoplastics on deriving conclusions based on the
arrival times of the reaction/polymerization front without accounting for the
homogeneity and anisotropy of the species and temperature.

Although not shown here, it has been observed that the effects of heat
diffusion on species mass diffusion (Soret effect), i.e. d – 0, on the time
histories of u and v are small, whereas those associated with the anisotropy of k
are large at the location (1.60, 1.60). In fact, the time history of u at (1.60, 1.60)
decreases in almost exponential manner from its initial value of 1, whereas v
first increases rapidly and then decreases.

4.5 The Dufour effect
A comparison between the results presented in Figures 9 and 11 and Figures 10
and 12 indicates that the Dufour effect is more important than the Soret one for
the reaction mechanism considered in this paper. In fact, case 1 predicts a faster
propagating front and a larger maximum value of u at (9.60, 9.60) than cases
15-19; cases 15 and 16 result in a slighly faster reacting front than case 17. The
differences between cases 15 and 16 and cases 18 and 19 are small, and these
cases result in a maximum value of v smaller than that of case 1, but larger than
that corresponding to case 17. However, the u and v profiles along the x and y
axes shown in Figure 12 clearly indicate that the Dufour effects on the
symmetry of these profiles may be important. For example, cases 18 and 19
result in almost symmetric profiles which are nearly identical to those of case 1.
Case 15 also results in almost symmetric profiles, but it has steeper and thinner
u and v profiles than case 1, whereas cases 16 and 17 result in clearly
non-symmetric profiles characterized by relative minima at the boundaries of
the domain, a relative minimum near the middle of the domain and two relative
maxima. By way of contrast, the v profiles corresponding to cases 16 and 17
decrease from the bottom and left boundaries to a minimum value on the upper
right quadrants and then increase monotonically as the top and right
boundaries of the domain are approached. These two cases also result in values
of u at the boundaries located at x ¼ Lx and y ¼ Ly which are smaller than
those at x ¼ 2Lx and y ¼ 2Ly, whereas the v profiles exhibit opposite trends,
i.e., v is larger at x ¼ Lx and y ¼ Ly than at x ¼ 2Lx and y ¼ 2Ly.
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The asymmetries in the u and v profiles observed in Figure 12 can be explained
in terms of the anisotropy of K. For example, case 17 corresponds to an
isotropic Dufour effect in the absence of Soret effects and with isotropic heat
and species diffusivity tensors, and the diffusion terms in equation (2) are
enhanced by the presence of cross-diffusion where u is convex, but they are
diminished where u is concave. This implies that heat diffusion enhancement
occurs between the location of the propagating front and the middle of the
domain.

Although, cases 15, 16, 18 and 19 correspond to anisotropic Dufour effects,
and the cross-diffusion tensor corresponding to cases 15 and 16 can be
diagonalized by means of a similarity transformation, it must be pointed out
that, in these two cases the diffusion terms in the v-equation are enhanced due
to the presence of second-order spatial derivative of u with respect to x. On the
other hand, K cannot be diagonalized in cases 18 and 19, and the diffusion
terms in the v-equation are enhanced due to the presence of second-order spatial
derivative of u with respect to x and y; this enhancement caused by a mixed
second-order derivative is the reason for the asymmetry of the u and v profiles
exhibited in Figure 12 for cases 18 and 19.

Figure 11.
Time histories of u (top)

and v (bottom) at
(x, y) ¼ (9.60, 9.60) for

boundary conditions of
type 1
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4.6 Combined cross-diffusion effects
When there are Soret and Dufour effects and the heat and the species
diffusivity tensors are isotropic, the results presented in the time histories of
Figure 13 indicate that the combined cross-diffusion result in slower reaction
fronts than the isotropic case 1, and the Soret and Dufour effects are much more
important than either the Soret or the Dufour ones (cf. compare Figures 9 and
11 with Figure 13). In addition, case 21 results in a maximum value of v nearly
identical to that of case 1, but larger than that of case 20.

Figure 14 indicates that the combined Soret-Dufour effects of cases 20-23
play an important role in determining the symmetry of the u and v profiles
along the x and y axes. Thus, case 22 yields the less symmetric profiles as a
consequence of the anisotropy of K, whereas the anisotropy of K is of little
importance as the results for cases 20, 21 and 23 indicate. These results are in
accord with the Soret and Dufour effects studied on an individual bases in
previous subsections, and can be explained again in terms of the eigenvalues
and the principal directions of the cross-diffusion tensor d as follows. In case
20, d is isotropic, whereas, in case 21, the eigenvalues and eigenvectors of d are
1.5 and 0.5, and (1, 1)T and (1,21)T, respectively. Therefore, the cross-diffusion

Figure 12.
u(x, 0, 50) and v(x, 0, 50)
(left) and u(0, y, 50) and
v(0, y, 50) (right) for
boundary conditions of
type 1
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effects on u are expected to be larger along the direction (1, 1)T than along
(1, 21)T, in agreement with the results shown in Figure 14.

Figure 14 also shows that cases 22 and 23 exhibit two relative maxima and
one relative minimum in the computational domain, whereas cases 20 and 21
only exhibit a relative minimum in the computational domain.

Figure 14.
u(x, 0, 50) and v(x, 0, 50)
(left) and u(0, y, 50) and

v(0, y, 50) (right) for
boundary conditions of

type 1

Figure 13.
Time histories of u (top)

and v (bottom) at
(x, y) ¼ (9.60, 9.60) for

boundary conditions of
type 1
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4.7 Combined effects
When there are Soret and Dufour effects and either the heat or the species
diffusivity tensors are anisotropic, one can find a variety of phenomena such as
those shown in Figures 15 and 16. Figure 15 shows that case 28 results in a
faster propagating front than case 1, which in turn predicts a faster front than

Figure 15.
Time histories of u (top)
and v (bottom) at
(x, y) ¼ (9.60, 9.60) for
boundary conditions of
type 1

Figure 16.
u(x, 0, 50) and v(x, 0, 50)
(left) and u(0, y, 50) and
v(0, y, 50) (right) for
boundary conditions of
type 1
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cases 24 and 25. Moreover, there are very few differences in the time histories of
u and v between cases 24 and 25. In addition, case 28 predicts a slightly smaller
peak value of v than the isotropic case.

A comparison between the time histories depicted in Figure 15 indicates that
the anisotropy of d does not play an important role in the two-dimensional
reactive-diffusive media with isotropic heat and species diffusion, and
the anisotropy of K has a larger effect on the reaction front arrival time at
(9.60, 9.60) than the anisotropy of d, in accordance with the results on the Soret
effect discussed in previous subsections.

The results shown in Figure 16 indicate that case 28 results in a higher
asymmetry of the u and v profiles at t ¼ 50 than the isotropic case 1 and cases
24 and 25. However, cases 24 and 25 predict larger maximum values of u at (0, 0)
than cases 1 and 28, and cases 1, 24 and 25 exhibit a relative maximum of u and
a broad valley of v in the computational domain, whereas case 28 predicts two
relative maxima and a relative minimum in both u and v in the domain.

The results shown in Figure 16 can once again be explained in terms of the
principal directions of the diffusivity tensors k, d, K and D, and indicate that
the values of u and v at x ¼ Lx and y ¼ Ly are smaller and larger, respectively,
than those at x ¼ 2Lx and y ¼ 2Ly, i.e. the values of u and v along (1, 1)T are
smaller and larger, respectively, than along (1, 21)T.

The results depicted in Figures 5-16 are of paramount importance to
determine the reaction-diffusion processes in the anisotropic media,
combustion of solid materials, heat and mass transfer in anisotropic media,
the time and homogeneity of the curing of thermosetting matrix composites,
the laser-grooving of fibre-reinforced orthotropic composite materials, and the
laser-induced thermal damage of fibres, for they show the arrival of the
reaction fronts as well as the histories of the species mass fractions and
temperature, as functions of the anisotropy of the species and heat diffusivities
and the Soret and Dufour effects. These figures indicate that the arrival time at
a monitor location is not an adequate measure of the uniformity of the species
and heat profiles in, say, the curing of thermosetting matrix composites. In
addition, these figures indicate that the time required to achieve a steady
solution which must be homogeneous because of the homogeneous Neumann
boundary conditions employed in this paper is a strong function of the
anisotropy of the heat and species diffusivity tensors and the Soret and Dufour
effects. In fact, the time required to reach a steady state solution increases as
the anisotropy of the heat and species diffusivity tensors increases, when there
are no Soret and Dufour effects; it is nearly independent of the Soret effect for
isotropic heat and species diffusivities in the absence of the Dufour effect,
decreases with the presence of Dufour effects in the absence of Soret ones, and
decreases in the presence of Soret and Dufour effects as the anisotropy of either
the heat or the species diffusivity tensor is increased.
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4.8 Effects of the boundary conditions
So far, we have restricted our discussion of results to those corresponding to
boundary conditions of type 1, which are much easier to implement
numerically than, for example, boundary conditions of type 5.

For the cases considered in this paper, it has been found that there are very
few differences between the results obtained with boundary conditions of types
1-5, except in cases 6 and 23 along the axes x ¼ 0 and y ¼ 0. Some sample
results that illustrate the differences in the u and v profiles obtained with the
five boundary conditions employed in this paper are shown in Figures 17-19
which correspond to cases 12, 6 and 23, respectively, and show u(0, y, t) and
v(0, y, t) at t ¼ 32 (top) and u(x, 0, t) and u(x, 0, t) at t ¼ 50 (bottom). The solid
lines in these figures correspond to the boundary conditions of type 1 which
produce nearly identical results to the boundary conditions of types 2 and 3,
whereas the boundary conditions of type 4 yield nearly identical results to the
boundary conditions of type 5.

The results depicted in Figure 17 indicate that the differences in the u and v
profiles along the x and y axes for the five boundary conditions employed in

Figure 17.
u(0, y, 32) (top left),
v(0, y, 32) (top right),
u(x, 0, 50) (bottom left)
and v(x, 0, 50) (bottom
right) for case 12
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this study is rather small for case 12 at t ¼ 32 and 50. Very small differences in
u and v have also been observed along the boundaries. However, the results for
case 6 exhibited in Figure 18 clearly indicate that even though the differences
between the boundary conditions of types 1, 2 and 3 are small, the differences
between the results corresponding to these conditions and those of boundary
conditions 4 and 5 are large near the boundaries located at x ¼ 2Lx and
y ¼ 2Ly in accordance with the discussion of the eigenvectors and eigenvalues
of k presented in previous sections.

For case 23 of Table I, the results depicted in Figure 19 show that the
boundary conditions of types 1-3 produce nearly identical results, and these
results have similar shapes to those boundary conditions 4 and 5 at t ¼ 32. At
t ¼ 50, boundary conditions of types 1-3 predict larger values of u at the left
boundary than boundary conditions 4 and 5 in this order, while the steepest
u velocity profile at this time is associated with the boundary conditions of
type 5.

Calculations performed until a steady state was achieved show that the five
types of boundary conditions used in this paper predict the same (steady)

Figure 18.
u(0, y, 32) (top left),

v(0, y, 32) (top right),
u(x, 0, 50) (bottom left)
and v(x, 0, 50) (bottom

right) for case 6
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values of u and v, the time required to achieve this state depends on the type of
boundary conditions employed, and boundary conditions of type 5 required
longer times to achieve steady state.

5. Conclusions
Non-linear reactive-diffusive phenomena in two-dimensional, anisotropic
media with cross-diffusion have been studied numerically by means of an
implicit, iterative, time-linearization, approximate factorization technique as
functions of the anisotropy of the heat and species diffusivity tensors and
cross-diffusion for five types of boundary conditions. It has been shown that
the anisotropy of the diffusivity tensors induces deformations of the front and
affects the front velocity. The magnitude of these effects increases as the
magnitude of the off-diagonal components of the heat and species diffusivity
tensors is increased. For the cases considered in this paper, it has been found
that cross-diffusion effects, i.e. the Soret and Dufour effects, affect less the
reaction front shape and velocity than the anisotropy of the heat and species
diffusivity tensors.

Figure 19.
u(0, y, 32) (top left),
v(0, y, 32) (top right),
u(x, 0, 50) (bottom left)
and v(x, 0, 50) (bottom
right) for case 23
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It has also been found that the five types of boundary conditions employed
in this study produce similar results except when there is either strong
anisotropy in the species or heat diffusivity tensors and there are no Soret and
Dufour effects, or the species and heat diffusivity tensors are isotropic but the
Soret and Dufour effects are anisotropic and important. If the species and heat
diffusivity tensors are isotropic, the effects of either Soret or Dufour
cross-diffusion are small for the cases considered in this study.

It has also been found that the time required to achieve steady state
conditions in two-dimensional, anisotropic, reactive-diffusive media increases
as the anisotropy of the heat and species diffusivity tensors increases when
there are no Soret and Dufour effects, is nearly independent of the Soret effect
for isotropic heat and species diffusivities in the absence of the Dufour effect,
decreases as the magnitude of the Dufour effect is increased in the absence of
Soret ones, and decreases in the presence of Soret and Dufour effects as the
anisotropy of either the heat or the species diffusivity tensor is increased.
Therefore, the time required to achieve homogeneity in the curing of
thermosetting matrix composites increases as the anisotropy of the heat and
species diffusivity tensors increases. It has also found that the boundary
conditions of type 5 required longer times to achieve steady state than the other
four types of boundary conditions considered here, the differences between the
boundary conditions of types 1-3 are small, and boundary conditions of type 4
produced nearly identical results to boundary conditions of type 5.
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